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K2 and TESS observations  
of massive stars

114 OB stars  
observed by K2

53 blue supergiants 
observed by TESS 
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Stars born with masses larger than approximately eight times the 
mass of the Sun play a significant role in the evolution of gal-
axies. They are the chemical factories that produce and expel 

heavy elements through their wind and when they end their lives as 
supernovae and form a black hole or neutron star1–3. However, the 
chemical yields that enrich the interstellar medium and the remnant 
mass strongly depend on the progenitor star’s interior properties4. 
The detectable progenitors of supernovae include blue supergiant 
stars, which are hot massive stars in a shell-hydrogen or core-helium 
burning stage of stellar evolution. Stellar evolution models of these 
post-main sequence stars contain by far the largest uncertainties in 
stellar astrophysics, as observational constraints on interior mix-
ing, rotation and angular momentum transport are missing. These 
phenomena are further compounded when coupled with mass loss, 
binarity and magnetic fields1–3. Across astrophysics, from star for-
mation to galactic evolution, it is imperative to calibrate theoretical 
models of massive stars using observations because they determine 
the evolution of the cosmos.

A unique methodology for probing stellar interiors is astero-
seismology5, which—similarly to seismology of earthquakes—uses 
oscillations to derive constraints on the structure of stars. The study 
of stellar interiors of low-mass stars like the Sun has undergone a 
revolution in recent years because of space telescopes, which have 
observed thousands of pulsating stars with unprecedented precision 
and duration. Since oscillations probe the physics of stellar struc-
ture, they have successfully been used to distinguish shell-hydrogen 
and core-helium burning red giant stars6, and to measure interior  

rotation profiles of thousands of low- and intermediate-mass stars7,8. 
These discoveries revealed that current angular momentum trans-
port theory is erroneous by at least an order of magnitude9.

Asteroseismology of massive stars is missing primarily due to lack 
of appropriate space telescope observations of these stars. Here we 
present a large and homogenous sample of hot massive stars observed 
by the K210 and Transiting Exoplanet Survey Satellite (TESS)11 space 
missions, which includes dozens of blue supergiants. Up to now, few 
blue supergiants have been shown to pulsate in coherent modes12, as 
their long-period pulsations are infamously difficult to detect using 
ground-based telescopes. Furthermore, the opacity driving mecha-
nism responsible for the excitation of coherent pulsation modes in 
massive stars is strongly dependent on a star’s metallicity, such that 
low-metallicity massive stars are not expected to pulsate in such 
modes13. In addition to coherent oscillations, it remains unknown 
whether a ubiquitous cause of stochastic low-frequency variability 
exists in massive stars, with the interaction of photospheric and  
wind variability seeming to play an important role14–16. Therefore, 
detailed scientific inference had to await high-quality, uninterrupted 
and long-duration space photometry, which is vital for unravelling 
and interpreting the complex variability of hot massive stars15.

To test the incidence of coherent pulsation modes and stochastic 
low-frequency variability in hot massive stars, we assembled a sample 
of 114 ecliptic stars and 53 Large Magellanic Cloud (LMC) stars of 
spectral type O or B with available K2 and TESS space photometry, 
respectively. We refer to Supplementary Tables 1 and 2 for the names 
and spectral types of all stars. Our K2 sample comprises stars from 
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waves in massive stars 
• Strong mandate to include angular momentum transport  

caused by gravity waves in stellar evolution codes
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ABSTRACT

Supernova (SN) 1987A was classified as a peculiar Type II SN because of its long rising light curve and the persistent presence of

H i lines in optical spectra. It was subsequently realized that its progenitor was a blue supergiant (BSG), rather than a red supergiant

(RSG) as for normal, Type II-P, SNe. Since then, the number of Type II-pec SNe has grown, revealing a rich diversity in photometric

and spectroscopic properties. In this study, using a single 15 M� low-metallicity progenitor that dies as a BSG, we have generated

explosions with a range of energies and 56Ni masses. We then performed the radiative transfer modeling with cmfgen, from 1 d until

300 d after explosion for all ejecta. Our models yield light curves that rise to optical maximum in about 100 d, with a similar bright-

ening rate, and with a peak absolute V-band magnitude spanning �14 to �16.5 mag. All models follow a similar color evolution,

entering the recombination phase within a few days of explosion, and reddening further until the nebular phase. Their spectral evolu-

tion is analogous, mostly di↵ering in line width. With this model set, we study the Type II-pec SNe 1987A, 2000cb, 2006V, 2006au,

2009E, and 2009mw. The photometric and spectroscopic diversity of observed SNe II-pec suggests that there is no prototype for this

class. All these SNe brighten to maximum faster than our limited set of models, except perhaps SN 2009mw. The spectral evolution

of SN 1987A conflicts with other observations in this set and conflicts with model predictions from 20 d until maximum: H↵ narrows

and weakens while Ba ii lines strengthen faster than expected, which we interpret as signatures of clumping. SN 2000cb rises to max-

imum in only 20 d and shows weak Ba ii lines. Its spectral evolution (color, line width and strength) is well matched by an energetic

ejecta but the light curve may require strong asymmetry. The persistent blue color, narrow lines, and weak H↵ absorption, seen in

SN 2006V conflicts with expectations for a BSG explosion powered by 56Ni and may require an alternative power source. In contrast

with theoretical expectations, observed spectra reveal a diverse behavior for lines like Ba ii 6142 Å, Na iD, and H↵. In addition to

diversity arising from di↵erent BSG progenitors, we surmise that their ejecta are asymmetric, clumped, and, in some cases, not solely

powered by 56Ni decay.

Key words. radiative transfer – hydrodynamics – supernovae: general – supernovae: individual: SN1987A

1. Introduction

Although the majority of Type II supernovae (SNe) exhibit a

declining bolometric light curve after shock breakout, compat-

ible with the explosion of a red-supergiant (RSG) star, a few

per cent of Type II SNe exhibit instead a long rise to opti-

cal (and generally bolometric) maximum (Woosley et al. 1988;

Kleiser et al. 2011; Pastorello et al. 2012; Taddia et al. 2012,

2016). Owing to this light curve peculiarity, these SNe are clas-

sified as Type II-peculiar. While some SNe with a long-rising

optical or bolometric light curve can be very luminous at maxi-

mum (see, e.g., Terreran et al. 2017), numerous SNe II-pec reach

a modest peak V-band brightness, even when characterized by

optical spectra with broad (Doppler-broadened) lines.

For SN 1987A, the founding member of the Type II-pec

SN class, the H↵ line absorption at one day is maximum at

about �18000 km s�1 from line center (Phillips et al. 1988; this

is amongst the largest values ever recorded for a Type II SN), but

the SN peaks about 80 d after explosion with a maximum V-band

brightness of only �16 mag (Catchpole et al. 1987; Hamuy et al.

1988; this is fainter than for typical Type II SNe). The basic

characteristic that distinguishes SN 1987A and Type II-peculiar

SNe from Type II-P SNe is their smaller progenitor radii

(Woosley et al. 1988; Woosley 1988; Shigeyama & Nomoto

1990; Utrobin 1993; Blinnikov et al. 2000; Utrobin et al. 2015;

Taddia et al. 2016). These works also emphasize that the mor-

phology of SN 1987A and of Type II-pec SN light curves gener-

ally requires mixing of 56Ni into the outer progenitor envelope as

well as mixing of envelope material (rich in H and He) deep into

the progenitor He core. Such mixing is expected theoretically,

inferred from nebular phase spectral modeling, and seen in mul-

tidimensional hydrodynamical simulations of blue-supergiant

(BSG) star explosions (Ebisuzaki et al. 1989; Fryxell et al.

1991; Liu et al. 1992; Li et al. 1993; Kozma & Fransson 1998;

Kifonidis et al. 2000, 2003; Wongwathanarat et al. 2013, 2015).

While these works present compelling evidence that we can

reproduce the observations of SNe II-pec, the modeling has been

limited to the photometry, and sometimes only to the bolomet-

ric light curve. Radiation hydrodynamical codes employ a vari-

ety of techniques for radiation transport, usually treating the gas

and the radiation as two separate fluids (see, e.g., discussion in

Blinnikov et al. 2000). The gas is however always assumed to be

in local thermodynamic equilibrium (LTE) and in steady state.

Spectroscopic modeling of SN 1987A has been done exten-

sively, with successes and problems, using a steady-state non-

LTE approach. Hoeflich (1988) finds evidence for departures
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H i lines in optical spectra. It was subsequently realized that its progenitor was a blue supergiant (BSG), rather than a red supergiant

(RSG) as for normal, Type II-P, SNe. Since then, the number of Type II-pec SNe has grown, revealing a rich diversity in photometric

and spectroscopic properties. In this study, using a single 15 M� low-metallicity progenitor that dies as a BSG, we have generated

explosions with a range of energies and 56Ni masses. We then performed the radiative transfer modeling with cmfgen, from 1 d until

300 d after explosion for all ejecta. Our models yield light curves that rise to optical maximum in about 100 d, with a similar bright-

ening rate, and with a peak absolute V-band magnitude spanning �14 to �16.5 mag. All models follow a similar color evolution,

entering the recombination phase within a few days of explosion, and reddening further until the nebular phase. Their spectral evolu-

tion is analogous, mostly di↵ering in line width. With this model set, we study the Type II-pec SNe 1987A, 2000cb, 2006V, 2006au,

2009E, and 2009mw. The photometric and spectroscopic diversity of observed SNe II-pec suggests that there is no prototype for this

class. All these SNe brighten to maximum faster than our limited set of models, except perhaps SN 2009mw. The spectral evolution

of SN 1987A conflicts with other observations in this set and conflicts with model predictions from 20 d until maximum: H↵ narrows

and weakens while Ba ii lines strengthen faster than expected, which we interpret as signatures of clumping. SN 2000cb rises to max-

imum in only 20 d and shows weak Ba ii lines. Its spectral evolution (color, line width and strength) is well matched by an energetic

ejecta but the light curve may require strong asymmetry. The persistent blue color, narrow lines, and weak H↵ absorption, seen in

SN 2006V conflicts with expectations for a BSG explosion powered by 56Ni and may require an alternative power source. In contrast

with theoretical expectations, observed spectra reveal a diverse behavior for lines like Ba ii 6142 Å, Na iD, and H↵. In addition to

diversity arising from di↵erent BSG progenitors, we surmise that their ejecta are asymmetric, clumped, and, in some cases, not solely

powered by 56Ni decay.

Key words. radiative transfer – hydrodynamics – supernovae: general – supernovae: individual: SN1987A

1. Introduction

Although the majority of Type II supernovae (SNe) exhibit a

declining bolometric light curve after shock breakout, compat-

ible with the explosion of a red-supergiant (RSG) star, a few

per cent of Type II SNe exhibit instead a long rise to opti-

cal (and generally bolometric) maximum (Woosley et al. 1988;

Kleiser et al. 2011; Pastorello et al. 2012; Taddia et al. 2012,

2016). Owing to this light curve peculiarity, these SNe are clas-

sified as Type II-peculiar. While some SNe with a long-rising

optical or bolometric light curve can be very luminous at maxi-

mum (see, e.g., Terreran et al. 2017), numerous SNe II-pec reach

a modest peak V-band brightness, even when characterized by

optical spectra with broad (Doppler-broadened) lines.

For SN 1987A, the founding member of the Type II-pec

SN class, the H↵ line absorption at one day is maximum at

about �18000 km s�1 from line center (Phillips et al. 1988; this

is amongst the largest values ever recorded for a Type II SN), but

the SN peaks about 80 d after explosion with a maximum V-band

brightness of only �16 mag (Catchpole et al. 1987; Hamuy et al.

1988; this is fainter than for typical Type II SNe). The basic

characteristic that distinguishes SN 1987A and Type II-peculiar

SNe from Type II-P SNe is their smaller progenitor radii

(Woosley et al. 1988; Woosley 1988; Shigeyama & Nomoto

1990; Utrobin 1993; Blinnikov et al. 2000; Utrobin et al. 2015;

Taddia et al. 2016). These works also emphasize that the mor-

phology of SN 1987A and of Type II-pec SN light curves gener-

ally requires mixing of 56Ni into the outer progenitor envelope as

well as mixing of envelope material (rich in H and He) deep into

the progenitor He core. Such mixing is expected theoretically,

inferred from nebular phase spectral modeling, and seen in mul-

tidimensional hydrodynamical simulations of blue-supergiant

(BSG) star explosions (Ebisuzaki et al. 1989; Fryxell et al.

1991; Liu et al. 1992; Li et al. 1993; Kozma & Fransson 1998;

Kifonidis et al. 2000, 2003; Wongwathanarat et al. 2013, 2015).

While these works present compelling evidence that we can

reproduce the observations of SNe II-pec, the modeling has been

limited to the photometry, and sometimes only to the bolomet-

ric light curve. Radiation hydrodynamical codes employ a vari-

ety of techniques for radiation transport, usually treating the gas

and the radiation as two separate fluids (see, e.g., discussion in

Blinnikov et al. 2000). The gas is however always assumed to be

in local thermodynamic equilibrium (LTE) and in steady state.

Spectroscopic modeling of SN 1987A has been done exten-

sively, with successes and problems, using a steady-state non-

LTE approach. Hoeflich (1988) finds evidence for departures

Article published by EDP Sciences
A70, page 1 of 18

4 Eldridge et al.

Figure 1. The bolometric (left panels) and visual magnitude (right panels) lightcurves of all our type II supernova models. The upper
panels are for single stars and the lower panels are for binary models with the same initial primary masses. Increased diversity in
lightcurve behaviour is evident due to binary interactions.
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